2nd generation Decoding ^ Eurocode 7 2nd generation geotechnical design

DR ANDREW BOND (GEOCENTRIX) CHAIR B/526 GEOTECHNICS PAST-CHAIR TC250/SC7 GEOTECHNICAL DESIGN

Decoding ^{2nd generation} Eurocode 7 2nd generation geotechnical design

- General rules
- Verification of limit states
- Obtaining appropriate values of ground properties
- Summary of key points

General rules 2ND GENERATION GEOTECHNICAL DESIGN Scope of Eurocode 7 Part 1

"[Eurocode 7 Part 1] provides **general rules for the design and verification of geotechnical structures**" EN 1997-1

EN 1997-1 establishes:

additional principles and requirements to those given in EN 1990 for the safety, serviceability, robustness, and durability of geotechnical structures

Design and verification in EN 1997-1 are based on:

- partial factor method
- prescriptive rules
- testing
- the Observational Method

Assumptions made by EN 1997

In addition to the assumptions given in EN 1990, EN 1997 (all parts) assumes:

5

Decod

ew

ode

New

ocentrix Ltc

New

- ground investigations are planned by individuals or organizations knowledgeable about potential ground and groundwater conditions
- ground investigations are executed by individuals with appropriate skill and experience
- evaluation of test results and derivation of ground properties from ground investigation are carried out by individuals with appropriate geotechnical experience and qualifications
- data required for design are collected, recorded, and interpreted by appropriately qualified and experienced individuals
- geotechnical structures are designed and verified by individuals with appropriate qualifications and experience in geotechnical design
- adequate continuity and communication exist between individuals involved in data-collection, design, verification and execution

Basic requirements of EN 1997-1

"**The assumptions** given in [EN 1997-1] **shall be verified**" EN 1997-1, 4.1.1(1)

The following models shall be used to verify the requirements for safety, serviceability, robustness, and durability of geotechnical structures:

- Ground Model
- Geotechnical Design Model

site specific outline of the disposition and character of the ground and groundwater based on results from ground investigations and other available data

Geotechnical Design Model

conceptual representation of the site derived from the ground model for the verification of each appropriate design situation and limit state

1st generation Eurocode 7 Definition of Geotechnical Category

'In order to establish minimum requirements for the extent and content of geotechnical investigations, calculations and construction control checks, **the complexity of each geotechnical design shall be identified together with associated risks**

"... a distinction shall be made between light and simple structures and small earthworks for which ... the minimum requirements will be satisfied by experience and qualitative geotechnical investigations, with negligible risk; [and] other geotechnical structures'

EN 1997-1:2004, 2.1(8)P

Quality management measures in EN 1997-1

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reserved

Verification of limit states 2ND GENERATION GEOTECHNICAL DESIGN

Ultimate limit states to be verified

The following ultimate limit states shall be verified, as relevant:

- failure of the structure or the ground, or any part of them including supports and foundations, by rupture, excessive deformation, transformation into a mechanism, or buckling
- loss of static equilibrium of the structure or any part of it (including buoyancy)
- failure of the ground by hydraulic heave, internal erosion, or piping caused by excessive hydraulic gradients (see EN 1997-1 for details)
- failure caused by fatigue (see other Eurocodes for details)
- failure caused by vibration
- failure caused by other time-dependent effects

Serviceability criteria for foundations

"The design criterion for the serviceability limit state C_{d,SLS} for foundation movement beneath a building shall be selected during the design of the supported structure"

EN 1990, A.1.8.4(1)

The sensitivity of a structure to foundation movement:

- should be classified separately for different modes of foundation movement
- should consider the ground conditions within the zone of influence of the structure

Suggested maximum deformation of foundations (with examples)

structural sitivity Class		Maximum differential settlement [†] ∆s _{Cd,SLS} (mm)	Maximum angular distortion ^t β _{Cd,SLS} (%)	Maximum filf ø _{Cd,SLS} (%)	
5	Highest	10	0.05	0.1 Towers* <i>h</i> ≥ 100 m Lift and escalator operation	
4	High	15	0.075	0.2 60 m ≤ <i>h</i> < 100 m	
3	Normal	30	0.15 Framed buildings and reinforced load- bearing walls	0.3 24 m ≤ <i>h</i> < 60 m	
2	Low	60	0.3	0.4 <i>h</i> < 24 m	
1	Lowest	100 Utility connections	0.5 Floor slabs	0.5	

*Towers and tall buildings ^tEN 1997-1:2004 Annex H gave:

Ser

SSC

SSC

SSC

SSC

SSC

- settlements (s_{Cd,SLS}) up to 50 mm "are often tolerable for isolated foundations"
- for sagging, $\beta_{Cd,SLS}$ = 0.05-0.33 % typically, with 0.2 % reasonable for most structures
- for hogging, $\beta_{Cd,SLS} = 0.1-0.66$ % typically, with 0.4 % reasonable for most structures

Verification of ultimate limit states

Ultimate limit states are verified by checking that:

Partial factors on actions or actions-effects?

Partial factors on actions should be used for the design of:

- linear and non-linear structural systems
- certain types of geotechnical structure (see EN 1997-3)

This is used in Verification Cases 1-3

Partial factors on actions should be used for the design of:

- certain types of geotechnical structure (see EN 1997-3)
- ropes, cables and membrane structures

This is used in Verification Case 4

Δ

Partial factors on material properties or resistance?

Factors on actions (left) vs factors on action-effects (right)

Factors on material properties (left) vs factors on resistance (right)

Partial factors for ground properties for use in fundamental design situations

Material propert	y	Partial factor γ_{M} for Set				
Material	Ground property	Symbol M0		M1		
Soil and fill	Shear strength in effective stress analysis	$\gamma_{ m au f}$				
	Coefficient of peak friction	γ _{tanφ,p}		1.25 k _M		
	Peak effective cohesion	γ _{c,p}				
	Coefficient of friction at critical state	γ _{tanφ,cs}	1.0	1.1 k _M		
	Coefficient of residual friction	γ _{tanφ,r}				
	Residual effective cohesion	γ _{c,r}				
	Shear strength in total stress analysis	γ _{CU}		1.4 k _M		
	Unconfined compressive strength	$\gamma_{ m qu}$	Same as γ_{cu}			
Rock material	Shear strength	$\gamma_{ au r}$	1.0	1.25 k _M		
and rock mass	Unconfined compressive strength	$\gamma_{ m qu}$	1.0	1.4 k _M		
Rock	Shear strength	γ _τ dis 1.0		1.25 k _M		
discontinuities	Coefficient of residual friction	$\gamma_{tan\phi,dis,r}$	1.0	1.1 k _M		
Interface	Coefficient of ground/structure interface friction	Ýtanδ	1.0	1.25 k _M		
Values taken from EN 1997-1						

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reservec

Obtaining appropriate values of ground properties **2ND GENERATION GEOTECHNICAL DESIGN**

Stiffness of common construction materials

Progression from test results to design values of ground properties

Example of derived values of ground properties from correlation

Indicative values of ground properties for fine soils (from NEN 9971-1)

Soil type			γ	q _c	arphi'	C'	Cu
			kN/m ³	MPa	0	kPa	kPa
Loam	Slightly sandy	Soft Firm-stiff Stiff-hard	19 20 21-22	1 2 3	27½-30 27½-32½ 27½-35	0 1 2.5-3.8	50 100 200-300
	Very sandy		19-20	2	271⁄2-35	0-1	50-100
Clay	Clean	Soft Firm-stiff Stiff-hard	14 17 19-20	0.5 1.0 2.0	17½ 17½ 17½-25	0 5 13-15	25 50 100-200
	Slightly sandy	Soft Firm-stiff Stiff-hard	15 18 20-21	0.7 1.5 2.5	22½ 22½ 22½-27½	0 5 13-15	40 80 120-170
	Very sandy		18-20	1.0	271/2-321/2	0-1	0-10
	Organic	Soft Firm-stiff	13 15-16	0.2 0.5	15 15	0-1 0-1	10 25-30
Peat	Small* overburden	Soft	10-12	0.1	15	1-2.5	10-20
	Large* overburden	Firm-stiff	12-13	0.2	15	2.5-5	20-30

Table also gives values (not shown here) of C_p , C_s , $C_c/(1+e_0)$, C_{α} , $C_c/(1+e_0)$, E_{100} *Small overburden \approx 5-25 kPa; large \approx 50 kPa

Options for selecting the representative value of a ground property

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reservec

Design values of ground properties

The **inferior design value** of a ground property (used in most design situations) is given by:

 $\underbrace{\overset{design}{X_{d,inf}}}_{\substack{value}} = \underbrace{\left(\begin{matrix} \underset{value}{\overset{mean}{X_{rep,mean}}} & \underset{value}{\overset{inferior}{x_{rep,inf}}} \end{matrix} \right) / \gamma_{M}$

The **superior design value** of a ground property (used when more critical, e.g. for downdrag):

$$\underbrace{ \overset{design}{X_{d, sup}}}_{d, sup} = \begin{pmatrix} \overset{mean}{\underbrace{value}} & \overset{superior}{\underbrace{value}} \\ \overbrace{X_{rep, mean}}^{yalue} \mid \overbrace{X_{rep, sup}}^{yalue} \end{pmatrix} \times \gamma_{M}$$

Summary of key points 2ND GENERATION GEOTECHNICAL DESIGN

Summary of key points

The main changes in the 2nd generation EN 1997-1 are:

- scope extended to include rock ("ground" = soil, rock, and fill)
- Geotechnical Category redefined as a combination of Consequence Class and Geotechnical Complexity Class
- robustness, durability and sustainability introduced
- the representative value of a ground property defined as either
 - a nominal value (cautious estimate)
 - a characteristic value (based on statistical evaluation)
- new clause on the determination of groundwater levels and pressures
- new procedure for verifying ultimate limit states using numerical models
- greater emphasis given to serviceability limit states
- new clause on the implementation of design (supervision, inspection, monitoring, and maintenance)
- new clause on testing
- clause on reporting has been revised
- new requirements for Geotechnical Construction Records

Decoding ^{2nd generation} Eurocodes www.geocentrix.co.uk/training

GLORGI D D LSOAVAGL TT R O C 0 0000

Our **2nd generation** courses include ...

- Decoding Eurocode 7
 - Basis of geotechnical design
 - Ground properties and ground investigation
 - Shallow foundations
 - Deep foundations

Decoding Eurocode 3 – Steel foundations

2nd generation Decoding ^ Eurocodes Geotechnical design

WWW.GEOCENTRIX.CO.UK

WWW.DECODINGEUROCODE7.COM